- IV. Linda Smith is using ANOVA to measure whether there is a difference between the average weekly sales of her 3 salespeople. The test will be at the .05 level of significance.
 - A. These are the null hypothesis and alternate hypothesis.

$$H_0: \mu_1 = \mu_2 = \mu_3$$

 $H_1: \mu_1 \neq \mu_2 \neq \mu_3$

- B. The level of significance for this single treatment, one-tail problem will be .05.
- C. F is the test statistic.

F = Estimated variance between the treatments
Estimated variance within the treatments

Note: Salespeople is the treatment variable and sales is the response variable.

Variance Analysis Summary Table								
Variance Sources	df	Sum of the Squares	Mean Squares (variance)	s ANOVA				
Between Treatments	t - 1	SS _T	$MS_T = \frac{SS_T}{t-1}$	$F = \frac{MS_T}{T}$				
Within Treatments (error)	N - t	SS _E	$MS_E = \frac{SS_E}{N-t}$	' MS _E				
Total Variance	N - 1	SS _{TOTAL}						

- D. Reject the null hypothesis when F from the test statistic is beyond the critical value of F for the .05 level of significance.
- E. Apply the decision rule.

t is the number of treatments n is the number of rows in a treatment N is total observations SS_T is the sum of the squares for treatments SS_E is the sum of the squares for error SS_{TOTAL} is the total sum of the squares MS_T is the mean squares for treatments MS_E is the mean squares for error

df = t - 1 = 3 - 1 = 2 for the numerator df = N - t = 12 - 3 = 9 for the denominator F 's critical value is 4.26.

Weel	Row Totals Required						
	Salesperson L is T ₁		Salesperson M is T ₂		Salesperson N is T ₃		for Calculations
	Sales (X ₁)	X_1^2	Sales (X ₂)	X_2^2	Sales (X ₃)	X_3^2	
	7	49	6	36	9	81	
Column Totals	6	36	8	64	8	64	
Required for	7	49	6	36	7	49	
Calculations	4	<u>16</u>	<u>6</u>	36	<u>10</u>	100	
$\sum X_T$	24		26		34		$\Sigma x = 84$
$(\Sigma X_T)^2$	576		676		1156		
n	4		4		4		N = 12
$(\sum X_T)^2$	144		169		289		$\sum \left[\frac{(\sum X_7)^2}{n}\right] = 602$
n							
$\sum X_T^2$		150		172		294	$\sum X^2 = 616$

$$SS_T = \sum \left[\frac{(\sum x_T)^2}{n} \right] - \frac{(\sum X)^2}{N}$$
$$= 602 - \frac{84^2}{12}$$
$$= 602 - 588 = 14$$

 $MS_T = \frac{SS_T}{t-1} = \frac{14}{3-1} = 7.0$

$$SS_E = \sum x^2 - \sum \left[\frac{(\sum x_7)^2}{n} \right]$$

= 616 - 602
= 14

$$MS_E = \frac{SS_E}{N-t} = \frac{14}{12-3} = \frac{14}{9} = 1.56$$

Total variance equals $SS_T + SS_E = 14 + 14 = 28$. Total variance also equals

$$SS_{TOTAL} = \sum x^2 - \frac{(\sum x)^2}{N}$$

= 616 - 588 = 28

Note: Half the variability has been explained by the treatment variable.

Reject H₀ because F = $\frac{MS_T}{MS_E} = \frac{7.0}{1.56} = 4.49$ and 4.49 > 4.26. Mean sales of these salespeople are not equal.